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Riemann wava in an arbitrary elastic medium with small anisotropy of arbitmry form on the wave 
front plane are considered. The variation of the wave quantities is not assumed to be smaii. The 

principal attention is devoted to situatiomr in which the presence of small anisotropy leads to qualit- 

ative modifications of the relations between the wave quantities and determines the tendency of the 

wavea to break. 

1. WE CONSIDER plane one-dimensional waves propagating in an elastic medium. We shall 
assume that the defo~ation and velocity of the medium are functions of the time t and the x 
coordinate of an orthogonal Cartesian system of Lagrange coordinates q, x,, x3=x 
connected with a certain initial state. 

To describe the deformation in a one-dimensional process, we shall use the components of 
the tensor ~~i/~~, i, k = 1, 2, 3, of displacement gradients (wf denotes the displacement 
vector), all the components of this tensor, except for &v,f& =r&, t) being constant for a 
plane wave, a~,/&~ = const, a= 1, 2. In terms of the Lagrange variables, the system of 
equations for the process under consideration has the form ]l] 

(1.1) 

Here p. is the density in the initial state, @(U,, S) is the elasticity potential of the medium 
(the internal energy per unit Lagrange volume), and S is the entropy per unit mass. Henceforth 
we will assume that the medium is uniform and @ does not depend directly on the Lagrange 
variable n. 

For system (1.1) we shall study Riemann waves (simple waves), i.e. solutions of the form 
u, = u,(@(x, r)), u, = ~~(sr(x, t)), S = con&, where cp(x, t) is a function unknown in advance. This 
converts (1.1) into the system of differential equations 

System (1.2) has non-trivial solutions 
values of the sy~etric matrix ll$ II, 

if det Ii@, -00c26~ II=O, i.e. if p6c2 = A are the eigen- 
which are Assad to be positive, the latter being 
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necessary in order for the medium to be stable. Tbe three eigenvalues h, define the 
characteristic velocities c,, while the eigenvectors dqldqr define the tangent directions of 
three families of integral curves of system (1.2) for simple waves at every point of the u, space, 
the families of curves being orthogonal to each other. 

Since cc(h) represents the propagation velocity of the “phase” of a wave, the substitution 
h = p& along an integral curve defines the variation of the shape of the wave profile with time. 
The variation of the wave profile with time changes direction at the extremum points of h on 
the integral curve (increasing steepness changes into decreasing steepness, or the other way 
round). As a result of increasing steepness, the wave may “break” and develop a d~~ont~~ty. 

The purpose of the present paper is to study the integral curves of system (1.2) and the 
variation of the characteristic velocities c&J along them, in&ding the search for the extre- 
mum points of h,. The integral curves of the Riemann waves and the extremum points of h, 
depend on the form of ?p@J, i.e. on the properties of the medium. The dependence on the 
entropy will henceforth be ignored, since s=const for every Riemann wave. If the elastic 
medic is isotropic, the component u, and u, character~~g the shear deformation in the 
plane of the wave front occur in the elastic potential only through the combination r2 = 4 + 4. 

The latter property may also be valid for some anisotropic media, the behaviour of which 
under displacement in the plane of the wave is isotropic, and which can be characterized by a 
vector r&, ZLJ lying in the plane of the wave front. We refer to this property as wave 
anisotropy. The purpose of this paper is to study the waves when there are small deviations 
from wave isotropy. 

We will first men~on some general proper~es of the integrai curves of Riema~ waves and 
the behaviour of the characteristic velocities along the curves in the case of wave isotropy 
ilz= J;(r2, ~3). Since .F(I’, ~3) is a symmetric function with respect to any plane passing 
through the u, axis in the z+z+% space, all derivatives of odd order in the direction normal to 
the plane turn out to be equal to zero in the plane. Clearly, one only needs to consider the 
behaviour of the eigenvalues and eigenvectors, for example, at the points of the 4% plane. 
Since, in view of the above, FL2 = Fz = 0 (here and henceforth we set Z$ = i#Fli3u&,), it follows 
that two of the eigenvectors of the matrix I$ lie in the yu, plane, while the third one is normal 
to that plane, This means that two of the families of integral curves consist of curves lying in 
the planes passing through the u, axis and correspond to plane-polarized waves, while the 
integral curves of the third family are circles lying in the planes u, =const with centres on the 
u, axis. 

From the above-men~o~ed symmetry it also follows that h= const on any integral curve 
from the latter family, i.e. the corres~n~ng wave retains its shape as it propagates. Using the 
terminology of ma~etohydr~yna~cs, we shall call it a rotational wave. Simple waves were 
studied in [I-3] in cases of wave isotropy with functions F of certain special types. 

When the wave anisotropy is small we shall express the elasticity potential @(@i) as an 
isotropic part and a small correction 

The first term on the right-hand side corresponds to the underlying isotropic part of the 
internal energy. The second term characterizes a small deviation of the medium from wave 
isotropy, g & 0 being a small number and p(u,) being, in general, an arbitrary function. The 
addition of anisotropy has little effect on the behaviour of the integral curves everywhere, 
except for small nei~bourh~s of the points at which two of the eigenvalues of the matrix F# 
are identical. The origin in the ui space, where the characteristic velocities of two transverse 
waves are equal to one another for g = 0, is always among such points. Depending on the form 
of F, other points and even whole surfaces with the above-mentioned property may appear. 

Moreover, when there is anisotropy, even small, the integral curves of quasi-rotational 
waves are no longer circles, and, more importantly, the corresponding characteristic velocities 
c, along the curves are no longer constant. The extremum points of c, will be found on the 
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integral curves of quasi-rotational waves. The deformation of the profile of such a wave is 
completely determined by the anisotropy (g f 0), even if it is small. 

2. A study of non-linear waves of low intensity [4,5] (near the origin in y space) revealed 
that anisotropy introduces more diversity and a qualitatively new behaviour of quasi- 
transverse waves. We would therefore expect the main effects caused by anisotropy to become 
apparent even for the model of an incompressible elastic medium, in which case there is no 
longitudinal deformation component (u, =0), and, correspondingly, there are no quasi- 
longitudinal waves. The absence of the u, component makes it possible to continue the study 
in the phase plane 4%. 

For the medium under consideration, the elasticity potenti~ (1.3) has the form 

@=F(r2)+gp(ul,u2), r*=u:+uZ 

When there is no anisotropy (g= 0) the integral curves in the yu, plane form two ortho- 
gonal families: rays plane-blazed waves) and circles (rotational waves). Their characteristic 
velocities (the eigenvalues of the matrix FJ are given by 

Here and henceforth we use the notation dF/dr = f(r), r and 8 being polar coordinates in 
the yu, plane. The function f(r) represents the dependence of the modulus of the shear stress 

o,=~~=~(aF/aU*)2+(aF/aU,)2 = f(r) 

on the modulus of the shear strains e ~ = (u,f + z#’ = r. Since F(r’) is an odd function of r, it 
f~~~o~~t f(r) is an even function. We shall assume that f(r) has the expansion f(r) = f’(O)r + 

6 m r+ . . . in the neigbbourhood of r = 0. 
As has been mentioned above, small anisotropy may lead to a qualitative modification of the 

field of integral curves in the neighbourhood of any point at which the eigenvalues of the 
matrix Fg are identical, i.e. any point where do(r) = X(flr - f’) = 0. The point r = 0 is always a 
solution of the equation 8 = 0. Besides, the equation may also have other solutions, which 
correspond to those points at which the ray passing through the origin is tangent to the graph 
of fir). 

To fii our ideas, we will consider f(t) to be of the form shown in Fig. 1, in which case 
f”(0) < 0 and the function do(r) has one non-zero root r = r.. Moreover, we shall assume that 
f’(r. > 0). We note that if r = r- < r,, then the graph of f(r) has a point of inflection, at which 

Fra . 1. 
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f’(r) = 0. We shall assume that f(r) has no other points of inflection. The function B!t = f’(r) 
has a minimum at rl. The sign of f”(r) characterizes the convexity off the graph of CI,(E,). A 
fictional) similar to that in Fig. 1 can be found in materials which can undergo large elastic 
deformations and also in the case of active loading of many materials within the plasticity 
domain. 

No further complications are required to consider waves in materials with opposite 
convexity or with two or more roots of 8(r). 

Depending on the characteristic velocities h, (ac=l, 2), we shall distinguish between slow 
waves, for which h = h,, and fast waves, for which k = h,. Obviously, for a function f(r) of the 
form chosen in Fig. 1, the radial waves are slow (Lt = h,) and the rotational waves are fast 
(k! = h2) if It, > h,, and vice versa if r > L 

To study the integral curves and characteristic velocities in the phase plane yy for g f 0, we 
will introduce an auxiliary system of coordinates ya, which is a Cartesian system with origin at 
the given point I, 8 and axes parallel and normal to the radius vector. In terms of these varia- 
bles, the matrix @@ = ~#/~y~~~ has the form Q,, = f’+gpll, @12=gpB, au =f Ir+gp,, where 
po4 = a”plaY,ily,,. The roots of the characteristic equation I lbue -U& I= 0 give the eigenvalues 

The eigenvectors 

can be found from system (1.2). 
The directions of the eigenvectors are undefined at the points where h, = k,. They are 

singular points, at which, according to (2.1), the two equations 

d(r,8) = 0, p12 = 0 (2.3) 

are satisfied simultaneously. 
It is obvious that the singular points lie in domains in which the order of ~~tude of d”(r) 

is equal to g. This is so, in particular, near the origin. 
A study of the integral curves in the nei~bo~h~ of the origin [41 revealed that there is a 

pair of singular points lying symmetrically about the origin, the distance between either of the 
points and the origin being of order Jg, The other singular points lie in the vicinity of the 
critical circle r = r., where do(r) = -X$“(r -t,)+ . . . . Their location is defined by the inter- 
section of the lines p~2 =0 and 

r,*(B)=r,+g(p22-p,*)/~’ (2.4) 

the latter being, obviously, close to the critical circle. 
Far from the critical circle, i.e. for i do I Bg, the direction of the eigenvector of the slow waves 

corresponding to h, (the upper sign in (2.1) and (2.2)) is close to the radius vector for rcrr, 

since dy, Idy, -g in this region (k, = k, being the q~si-radial wave). If r > G, then dy, Idy, -g-l 
for the same slow waves, and the eigenvector of this family is close to the direction of the yZ 
axis, which is perpendicular to the radius vector (h, = h, corresponds to a quasi-rotational 
wave). Thus the integral curves of slow waves rotate by an angle x12, the process being con- 
centrated in a narrow layer -g near the critical circle. 

At every point the integral curves of fast waves are perpendicular to the eigenvectors of the 
described family of slow waves. Tlms, for *I$ I, they are quasi-rotational (k, = h,) in the 
domain r CG and quasi-radial (hZ =h,) for r >~r. Moreover, the direction of the curves 
changes by an angle x12 in a narrow zone near the critical circle. 
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The lines from either family rotate in the direction defined by the function dy, ldy, given by 
(2.2). The numerator in (2.2) is always negative for the family of slow waves and positive for 
the family of fast waves. Thus, for pn >O, the integral curves of slow waves rotate to the right 
in the above-mentioned narrow zone as r increases, while for pi2 < 0, the lines rotate to the left, 
along with the appropriate change of direction of the integral curves of fast waves. For r c rr 
the integral curves of slow waves and, for r > r,, the integral curves of fast waves intersect the 
lines pn = 0 along the radius vector (dy, ldy, = 0). For r > r.. the integral lines of slow waves 
and, for r c r,, the integral lines of fast waves intersect the lines p12 = 0 in a direction perpen- 
dicular to the radius vector. 

An expansion of the functions (2.3) appearing in Eq. (2.2) up to the linear terms was used to 
study the behaviour of the integral curves near the singular points. In order to find the char- 
acteristic directions, a third-order equation was obtained, which can have either one or three 
real solutions, depending on the sign of a~,/&. If ap,/iM > 0 at a singular point, then there is 
only one characteristic direction, which is close to the radius vector (at an angle a = gap, /& to 
the vector), and which is tangent to a quasi-radial integral curve of slow waves for r c r, and to 
an integral curve of fast waves for r>r,. But if apI,/& ~0 at the singular point, then, in 
addition to the above-mentioned radial directions, there are two more directions, the angle 
between either of which and the positive or negative direction of the yz axis (circle) being 
small. 

The behaviour of the integral curves of slow and fast waves is shown in Fig. 2 in the case 
when aplz/iXJ > 0 (a, b) and a&, /&I < 0 (c, d). 

As has already been mentioned, to study the deformation of the wave profile in time one 
must compute the derivatives of the characteristic velocities k-, (a= 1, 2) along the corres- 
ponding integral curves. When differentiating L&J we shall use a polar system of coordinates 
r, 8. As has been shown above, sufficiently far away from the origin and the critical circle, there 
is little difference between the integral curves and the rays and circles. 

F~3.2 
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For the quasi-radial lines, we shall characterize the variation of L by the derivative 

dh-,(r,e) ah, ah de +‘- 
dr =F ae dr 

where ~$3 ldr = r-‘dy, ldy, is defined by the equation of the integral curve (2.2). We have 

(2.5) 

with an error of order 8’. 
Since, by assumption, f” can vanish only at the point r = r- c L, it follows that only for the 

slow quasi-radial waves an extremum of 3L, exists on each integral curve, the extremum lying 
on a line close to the circle r = r- inside the critical circle. 

For the quasi-rotational waves, we shall characterize the variation of h by the derivative 

&&e) = ahO dr +ah, 
de & de a0 

Taking into account that Id0 IQ in the domain under consideration, one can neglect the 
terms containing higher powers of g when computing the derivatives. Thus one gets 

*e - x-gq(r,e), q(r,B,=%--+ (2.6) 

It follows that, for r-r. S-g, the extremum points of h, lie on the line q(r, 0) = 0 both for the 
fast waves (inside the critical circle r = c) and slow waves (outside the circle). 

Using (2.5) and (2.6), the inequality f”(r.) > 0, and taking into account that every integral 
curve rotates according to the sign of pu when intersecting a neighbourhood of the critical 
circle, one can draw the following conclusions. If q and pu have opposite signs on a section of 
the critical circle, then, as a result of the intersection by the integral lines of slow waves 
(propagating almost along the radius for r cr. -O(g), and almost around the circle for 
r > r. -O(g)), the sign of the derivative of 111 along the integral curve remains unchanged in the 
vicinity of the critical circle. In the same case, the sign of the derivative of h, changes for the 
fast waves. If q anti plz have the same sign, then the sign of the derivative of h changes for the 
slow waves and remains unchanged for the fast waves. If the sign of the derivative changes, it 
means that there is one extremum (or an odd number of extrema) of h on the integral curve 
inside a neighbourhood of the critical circle. When the sign of the derivative is constant, no 
extremum points exist (or the number of extrema is even). A more detailed study of the 
behaviour of h, near the critical circle reveals that the possibilities mentioned in parentheses 
cannot be realized. 

Indeed, the equation for the extremnm line of &, can be represented in the form 

@dIpI -2f"+cW+t?2B =. 

1 

&!.P,,+pzz 
a0 2 & 

(2.7) 

Here dl is a parameter along an integral curve such that dl+ 0 in a neighbourhood of the critical circle 
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for any non-zero element of the integral curve. On the extremum line, the number d(r, B)=d” + 
Xg(h -prJ introduced above can be determined from (2.7). It characterizes the distance between the 
extremum line of 1 given by (2.7) and the line d = 0 measured along the radius, with d > 0 inside the line 
and d c 0 outside the lime. 

For Id0 Ibg, the left-hand side of Eq. (2.7) takes the simplified forms (2.5) and (2.6). In the narrow 
zone under investigation, in which d is small, one can introduce the auxiliary extended variable 
t=dl(gp,), for which zS1 and gz91. Using an approximate expression for the root of the quadratic 
equation (2.7) and neglecting a number of terms in accordance with the latter inequalities, we obtain a 
solution of (2.7) in the domain where d is small: d = gpl,(-f”l(gq))“3. It is obvious that there is always a 
unique real root. For the fast waves (the plus sign in (2.7)), the solution acts in the domain where d > 0, 
i.e. p,& c 0, and, for the slow waves (the minus sign), in the domain where d c 0, i.e. for p*q > 0. 

In Fig. 2 the extremum lines (2.7) are represented by the dashed lines, the arrows indicating 
the direction of increase of X,. 

3. It is obvious that the number and location of singular points and extremum lines of A, 
depend very much on the form of p(r+, 4). Expansions in terms of u, and u, were used to 
study the integral curves for g f 0 in a small neighbourhood of r = 0 [4,5]. It turned out that if 
the expansion of p(u,) contains quadratic terms, the function can be taken in the form 
p= 4-4 for small u, and 4. We shall apply the same specific function P(u,) to waves of 
finite intensity. This makes it possible to give a more illustrative representation of the behavi- 
our of integral curves in the whole q, u, plane. 

Now, suppose that the incompressible medium has the elasticity potential @= F(r’)+ 
Xg(g -y”), where dF/dr = f(r) is the function presented in Fig. 1. This means that one must 
set pn =sin29, X(pa?-Q =cos20 and pit +pp =0 in (2.1), (2.2) and (2.3). The integral curves 
turn out to be symmetric about the coordinate axes. 

The singular points of the two families of integral curves coincide and line on the coordinate 
axes (pn = sin28 = 0), their positions being given by do(r)+gcos2O = 0 (cf. (2.3)). This gives 
three pairs of points: the points C on the u, axis such that r& = 0 and z& = i(-2g/$,“‘))“2, the 
points B on the u, axis such that %’ = 0 and g = S(r, - 2g/$‘), and the points A on the u, axis 
such that 4 = f(~ + 2gl f;“) and z& = 0. The integral curves in the neighbourhood of C were 
studied in [4]. A study of the integral curves in the neighbourhood of B reveals there are three 
integral curves from each family passing through B, namely, the ray along the u, axis and two 
lines such that the angles *cz = ~2g/~~~~‘2 between their directions and the u, axis are small. 
There is one integral curve passing through A, namely, the ray along the u, axis. The 
behaviour of the integral curves in the neighbourhood of A and B is the same as that shown in 
Fig. 2 to within a rotation. 

The integral curves intersect the critical circle r = K in directions parallel to the coordinate 
axes u,. Near the circle r = r. the lines of either family rotate by an angle 7c/2 in the direction 
determined by the sign of p~/(~p~ /iH) = tg2e. The integral lines of slow and fast waves are 
depicted by the solid lines in Fig. 3. 

The variation of the eigenvalues A along the corresponding integral curves is defined by the 
derivative 

(3.1) 

Here d”=dO(r)=X(flr-f’), as before. By symmetry, it suffices to consider dhldl only in 
the first quadrant, 1 being chosen so that it increases along the integral curve as r increases. It is 
clear that the sign of dhldl changes on the coordinate axes, where sin28 = 0 (this corresponds 
to the equality 4 = -3sin281r = 0). Moreover, for the slow waves, the extrema of h, form a line 
close to the circle r = r- (f”(r-) = 0). The extremum line of X, is represented by the dashed line 
in Fig. 3(a). 

The fact that the lines p12 = 0 and q= 0 coincide introduces a certain symmetry and some 
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(b) 

Fro. 3. 

degeneracy into the problem. In particular, according to Sec. 2, since the signs of q and p12 are 
always different, an additional extremum of h in the neighbourhood of the critical circle exists 
only for the fast waves. This portion of the extremum line of h forms an oval symmetric about 
the coordinate axes, close to the critical circle, and contained completely within the circle. It 
passes through the singular point B and the point y = K, ts, = 0. The whole extremum line of 
X, consists of the oval and those portions of the coordinate axes that are intersected by the 
integral curves of fast waves. It is represented by the dashed line in Fig. 3(b). The arrows 
indicate the direction of increase of h, on the integral lines. 

4. We shall now consider the behaviour of the characteristic velocities and integral curves of 
Riemann waves in a compressible medium with small a~sotropy, for which (1.3) holds. We 
will choose the axes of a local Cartesian system of coordinates yi to be tangent to the 
coordinate lines of a cylindrical system with the z axis parallel to y. In this system F;, = Faz = 0, 
Fzz = 4 /r and 8 = i3F /ilr. Here and henceforth the subscript 1 denotes differentiation with 
respect to r = (4 + i#‘2, the subscript 3 denotes differentiation with respect to z = u?), and the 
subscript 2 denotes ~fferentiation along a tangent line to the circle of radius r. 

In the region in which the eigenvalues of the matrix Fe differ by a finite number, the integral 
curves for g # 0 are close to the corresponding integral curves obtained for g = 0. In Sec. 1 it 
was shown that, for g -0, one of the families of integral curves in the U, space consists of 
circles lying in the planes & = const (rotational waves), their characteristic velocity being given 
by the eigenvalue hi = F,lr. The other two families consist of plane-polarized waves with 
integral curves contained in the planes passing through the u, axis and having eigenvalues 
A:, c = %3/I(F,, + 5, f P%- F,)’ + 44:11’21+ 

In order for the eigenvalues of two plane-polarized waves to be equal it is necessary for the 
two equalities F,, = Fj3 and F,, = 0 to be satisfied simultaneously. In the general case, the 
equalities can be satisfied only at different points of the plane. To those points, provided they 
do not lie on the u, axis, there correspond circles in U, space. 

In the general case of a compressible medium, to investigate those wave properties that have 
been observed in the incompressible case, we shall assume that in some states it is possible for 
two eigenvalues to be equal in the domain under consideration in the compressible medium 
for g = 0, one of the eigenvalues corresponding to a rotational wave with h = hi, and the other 
one to a plane-polarized wave which turns into a transverse wave with h= ht for small u,. 
Since the eigenvalues of the matrix FQ corresponding to the rotational and plane-polarized 
waves can be determined from ~dependent equations, the requirement that the eigenvalues 
should be equal leads to a single equation, as opposed to the previous case. The equation 
defines a curve in the y, u, plane or a rotation-symmetric surface in uj space. The eqUatiOn 

has the form 
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For the compressible medium under consideration, the rotation-symmetric surface with axis 
u, plays the same role as the critical circle r = r. in the case of an incompressible medium in 
Sets 2 and 3, Do@, I+) being similar to the function a(r) used in those sections. 

Consider the surface X0 obtained by rotating an integral curve from the “first” family 
corresponding to ht about the u, axis. 

The surface can be doubt of as being formed by the curves from the first family, each of the 
curves lying in a plane that passes through the u, axis. On the same surface lie the integral 
curves from the “second” family A& i.e. the circles r = const. The surface X0 is tangent to the 
plane u, = const at the point u, =0, r.+ =0, and, for small u, and z+ it corresponds to quasi- 
transverse waves. The projections of the two families of integral curves onto the plane 
u, =const coincide with the integral curves for the inco~ressible medium, i.e. lines and 
circles. Since the matrix Fb. is symmetric, the eigenvector of the third family kt is normal to the 
eigenvectors of the other families, which implies that it is normal to X0. 

Thus, for g = 0, each of the surfaces X0 consists of integral curves from the first and second 
families and plays the same role as the plane u, = 0 in the case of an incompressible medium. 
The only difference is that there are many surfaces I;’ and they fill the whole space u,. 

For a small g #O, the integral curves from the f&t and second families remain close to the 
corres~nd~~ surfaces X0 and the qualitative behavior of their projections on to X0 is the 
same as that of the integral curves in the plane r+ =0 in the case of an incompressible medium. 

The first of these assertions follows from the fact that the integral curves are orthogonal to the 
eigenvector of the third family at every point, the eigenvector being almost normal to Co for any small 
g # 0. Everywhere away from the surface Do - -0 and the r+ axis the integral curves of the two families 
under consideration are close to the integral curves for g = 0. 

For small y and q, the behaviour of the integral curves corresponding to the quasi-transverse waves 
is the same [4] as that of the integral curves for small u., and u, in the ca.~ of an incompressible medium 
(Sets 2 and 3). In the neighbourhood of the surface Do = 0, on which k: = ;1”, the behaviour of the 
integral curves from either family undergoes qualitative modifications, while the curves remain close to 
their own surface Co. The surface 1)’ =0 is rotationa~y symmetric, and its intersection with the surface 
C” is a circle, which is the an~ogue of the critical circle r- - r. in the case of an incompressible medium. 

In the neighbourhood of the surface Do = 0 the eigenvalues of the families under consideration can be 
represented by the formula 

As in the case of an incompressible medium, the equality h, = h;?, which defines the position of the 
singular points, leads to the following two relations 

One can see that the singular points form a line close to the surface Do =O. On each surface Co there 
are isolated points, the intersections of the Ime (4.1) with the surface. The behaviour of the integral curves 
in the nei~bo~ho~ of a singuhu point is qua~tatively the same as in the case of an ~~rnp~ssible 
medium. 

If one intersects a narrow zone, where Do is of or&r g, without passing through a singular point, then 
A, will remain distinct from & over the whole path. However, on one side of that narrow zone Lr 
corresponds to waves quasi-polarized in a plane, while, on the other side, it corresponds to quasi- 
rotational waves. This means that the integral curves correspondiig to h, rotate by 900 inside the zone, as 
in the case of an incompressible medium. The integral curves corresponding to ;12 are orthogonal to the 
former ones and also rotate by 90*. 

For the waves quasi-polarized in a plane the derivatives of h along the corresponding integral curves 
are finite and close to their values for g = 0. For quasi-rotational waves the derivatives are small and are 
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completely defined by the anisotropy of the medium 

(4.2) 

Equating (4.2) to zero, we obtain the equation of a surface, at the intersection with which h, attains an 

extremum over its integral curve. The intersection of the surface with Z” yields a curve similar to the 
curve q = 0 in the case of an incompressible medium. Just as in the case of an incompressible medium, it 

can be shown that, in a small neighbourhood of the surface Do = 0, the sign of the derivative of k also 

changes on an integral line from one of the families of integral lines corresponding to h, and h,. 
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